

Mobile Radiation Monitor GammaCART

Application

Mobile spectrometric system Mobile Radiation Monitor is designed to measure gamma radiation energy distribution, identify gamma emitting radionuclides, as well as calculate specific and surface activity of gamma emitting radionuclides under conditions of their natural occurrence and at nuclear industry premises. In addition, the system can be used for radiation monitoring, e.g., for examination of large areas, searching lost or stolen gamma radiation sources, study of radionuclide precipitation near radiation hazardous sites without preliminary sampling.

Accessories

There are various modifications of system Mobile Radiation Monitor:

- Containing spectrometer with 1 or 2 NaI(TI) scintillation detectors;
- Containing spectrometer with 1 or 2 LaBr3(Ce) scintillation detectors;
- Containing spectrometer with 1 or 2 HPGe detectors

Complete set (standard)

- Electric vehicle as a mobile platform
- Gamma radiation spectrometer containing:
 - Gamma radiation detector(s);
 - Multichannel channel analyser Polynom;
- Thermostabilization system (for NaI(TI) or LaBr3(Ce) detectors) containing:
- Thermostabilizing housing with a built-in heat exchanger;
- Cooling and heating system box;
- Hoses for circulation of the cooling liquid;
- Navigation system including a external antenna;
- Shockproof toughbook operable in harsh conditions;
- Router with antenna which provides connection between the analyser, navigation system and toughbook;
- Fixation and positioning system for the detection
- Charger for the electric vehicle.

Baltic Scientific Instruments Ramulu str. 3 Riga, LV - 1005

Latvia

Phone: (+371) 67383947 Fax: (+371) 67382620 Email: sales@bsi.lv www.bsi.lv

Specification

Parameter	Value
Relative energy resolution for LaBr3(Ce)	3.5%
Registration efficiency for LaBr3(Ce)	at least 0.6%
Energy range	40 keV ÷ 3000 keV
Integral nonlinearity	< ±1.0 %
Energy conversion function (during 24 hours)	< ±1.0 %
Maximum throughput of the spectrometer	at least 5·10⁴ cps
Speed range of the electric vehicle	
fast mode	4 km/h – 25 km/h
slow mode	0.5 km/h - 4 km/h
Operation setting time	<10 minutes
Continuous operation time	at least 8 hours
Completely charged	10 hours
Temperature range	from -10°C to $+55$ °C
The average MTBF	10000 hours

Surface activity measurement		
Distance between the detector's surface and the ground, cm	Radionuclide	Activity measurement range, Bq/kg
	¹³⁷ Cs	0.035 ÷ 1300
25	⁶⁰ Co	0.021 ÷ 650
	¹³⁴ Cs	$0.024 \div 500$
	¹³⁷ Cs	0.04 ÷ 1400
40	⁶⁰ Co	0.023 ÷ 720
	¹³⁴ Cs	0.025 ÷ 560
60	¹³⁷ Cs	0.046 ÷ 1600
	⁶⁰ Co	$0.028 \div 820$
	¹³⁴ Cs	$0.028 \div 620$